2015年普通高等学校招生全国统一考试(天津卷)文数答案解析(正式版)(解析版)

一、选择题(每小题 5 分,共 40 分) 1.已知全集 U = {1, 2,3, 4,5, 6} ,集合 A = {2,3,5} ,集合 B = {1,3, 4,6} ,则集合 A (? ) =( UB (A) {3} 【答案】B 【解析】 试题分析: A = {2,3,5} , ? ) = {2,5},故选 B. U B = {2,5} ,则 A (? UB 考点:集合运算 (B) {2,5} (C) {1, 4, 6} (D) {2,3,5} ) ì x- 2 0 ? ? 2.设变量 x , y 满足约束条件 í x - 2 y 0 ,则目标函数 z = 3x + y 的最大值为( ? ? ? x +2y - 8 0 (A) 7 【答案】C (B) 8 (C) 9 (D)14 ) [来源:学科网] 考点:线性规划 3.阅读下边的程序框图,运行相应的程序,则输出 i 的值为( (A) 2 (B) 3 (C) 4 (D)5 ) 【答案】C 【解析】 1 试题分析:由程序框图可知: i ? 2, S ? 8; i ? 3,S ? 5; i ? 4, S ? 1. 故选 C. 考点:程序框图. 4.设 x ? R ,则“ 1 < x < 2 ”是“ | x - 2 |< 1”的( (A) 充分而不必要条件 (C)充要条件 【答案】A 【解析】 试题分析:由 x ? 2 ? 1 ? ?1 ? x ? 2 ? 1 ?1 ? x ? 3 ,可知“ 1 < x < 2 ”是“ | x - 2 |< 1”的充分而不必要条件, 故选 A. 考点:1.不等式;2. 充分条件与必要条件. 5. 已知双曲线 ) (B)必要而不充分条件 (D)既不充分也不必要条件 x2 y 2 2 - 2 = 1(a > 0, b > 0) 的一个焦点为 F (2, 0) , 且双曲线的渐近线与圆 ( x - 2) + y 2 = 3 相 2 a b ) (B) 切,则双曲线的方程为( (A) x2 y 2 =1 9 13 x2 y 2 =1 13 9 (C) x2 - y2 =1 3 (D ) x - 2 y2 =1 3 【答案】D 考点:圆与双曲线的性质. 6. 如图,在圆 O 中,M,N 是弦 AB 的三等分点,弦 CD,CE 分别经过点 M,N,若 CM=2,MD=4,CN=3,则线段 NE 的 长为( ) (A) 8 3 (B) 3 (C) 10 3 (D) 5 2 【答案】A 【解析】 试题分析:由相交弦定理可 [来源:学&科&网] CM ? MD ? CN ? NE ? 考点:相交弦定理 1 CM ? MD 8 AB ? AB ? NE ? ? , 3 CN 3 故选 A. 2 7. 已 知 定 义 在 R 上 的 函 数 f ( x) = 2|x- m| - 1(m为实数) ) (D) c < b < a 为 偶 函 数 , 记 a = f (log0.5 3), b = f (log2 5),c = f (2m) ,则 a, b, c ,的大小关系为( (A) a < b < c 【答案】B 【解析】 试题分析:由 f ? x ? 为 偶函数得 m ? 0 ,所以 a ? 2, b ? 4, c ? 0 ,故选 B. 考点:1.函数奇偶性;2.对数运算. 8. 已知函数 f ( x) = í (A) 2 【答案】A (B) c < a < b (C) a < c < b ì ? 2- | x |, x 2 ,函数 g ( x) = 3 - f (2 - x) ,则函数 y = f ( x) - g ( x) 的零点的个数为 2 ( x 2) , x > 2 ? ? (C)4 (D)5 (B) 3 考点:函数与方程. 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 9. i 是虚数单位,计算 【答案】-i 【解析】 试题分析: 1 ? 2i 的结果为 2?i . 1 ? 2i ?i 2 ? 2i ?i ? i ? 2 ? ? ? ? ?i . 2?i 2?i 2?i 考点:复数运算. 3 10. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3 . 【答案】 8π 3 【解析】 试 题分 析: 该几 何体是由 两个 高为 1 的圆 锥与一 个高 为 2 圆 柱组 合而成 , 所以 该几何 体的 体积为 1 8π 3 2 ? ? π ?1 ? π ? 2 ? (m ) . 3 3 考点:1.三视图;2.几何体的体积. 11. 已知函数 f ? x ? ? ax ln x, x ? ? 0, ??? ,其中 a 为实数, f ? ? x ? 为 f ? x ? 的导函数,若 f ? ?1? ? 3 ,则 a 的值 为 【答案】3 【解析】 试题分析:因为 f ? ? x ? ? a ?1 ? ln x ? ,所以 f ? ?1? ? a ? 3 . 考点:导数的运算法则. 12. 已知 a ? 0, b ? 0, ab ? 8, 则当 a 的值为 【答案】4 【解析】 试题分析: log 2 a ? log 2 ? 2b ? ? ? 时 log2 a ? log2 ? 2b? 取得最大值. [来源:学§科§网] . ? log 2 a ? log 2 ? 2b ? ? 1 1 2 2 ? ? ? log 2 2ab ? ? ? log 2 16 ? ? 4, 当 a ? 2b 时取等号, 2 4 ? ? 4 结合 a ? 0, b ? 0, ab ? 8, 可得 a ? 4, b ? 2. 考点:基本不等式. 13. 在等腰梯形 ABCD 中,已知 AB DC , AB ? 2, BC ? 1, ?ABC ? 60 , 点 E 和点 F 分别在线段 BC 和 CD 2 1 BC ,

相关文档

2015年普通高等学校招生全国统一考试(湖北卷)文数答案解析(正式版)(解析版)
2015年普通高等学校招生全国统一考试(湖南卷)文数答案解析(正式版)(解析版)
2015年普通高等学校招生全国统一考试数学文试题(天津卷 Word版 含解析)
电脑版