高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构课件新人教a必修3_图文

第三课时 循环结构

预习课本 P12~19,思考并完成以下问题
(1)常见的循环结构有几类?分别是什么?

(2)当型循环结构与直到型循环结构能否相互转化?

[新知初探]
1.循环结构的概念及相关内容

反复执行 某些步骤的 (1)循环结构:按照一定的条件 _________
结构.

反复执行 的步骤. (2)循环体: _________

[点睛] (1)循环结构中必须包含条件结构, 以保证在适当时候 终止循环. (2)循环结构内不存在无终止的循环,即死循环.

2.循环结构的分类及特征

名称

直到型循环

当型循环

结构

先执行循环体,后判断条件, 先判断条件,若条件满
执行循 特征 若条件不满足,则_______
执行循环体 , 足,则___________

____ 环体,否则_________ 终止循环

否则 _________ 终止循环

[点睛]

两种循环结构的区别和联系

类型

特征

何时终止 循环体执行 循环 次数

联系

直到型

先 执 行 , 后 条件满足 至少执行一 判断 时 次 可以相互 转化,条

当型

先 判 断 , 后 条件不满 可能一次也 执行 足时 不执行

件互补

[小试身手]
1.在如图所示的程序框图中,输出 S 的值为 A.11 C.13 B.12 D.15 ( )

第 1 题图 解析:选 B 由框图知 S=3+4+5=12.

2.程序框图如图所示,其输出结果是 ( A.110 C.127 B.118 D.132

)

解析:选 C 由题图可知,a 的值依次为 1,3,7,15,31,63,127, 因为 127>100, 所以输 出 a=127.

第 2 题图

3.如图所示的程序框图运行后,输出的结果为________.

解析:由题意知,s=1×5×4=20. 答案:20

5 4.一个算法的程序框图如图所示,若该程序输出的结果为 , 6 则判断框①中应填入的是________.
5 1 1 1 解析: 由框图知, = + + 6 1× 2 2× 3 3× 4 1 1 + …+ = 1- ,∴ n= 5,运 n? n+ 1? n+ 1 行 5 次. ∴判断框中应为“ i≤ 5?”. 答案: 5

含循环结构程序框图的设计

[典例] 序框图.
[解]

设计一个计算 1×3×5×…×99 的算法,画出程

算法如下:

第一步,令 i=1,S=1. 第二步,S=S×i. 第三步,i=i+2. 第四步,判断 i>99 是否成立,若成立,则输出 S;否则 执行第二步.

程序框图如图所示:

利用循环结构解决问题的“三个确定” (1)确定循环变量及初始值,弄清循环变量表示的意 义、取值范围及变化规律. (2)确定循环体的功能,根据实际情况确定采用哪种 循环结构. (3)确定循环结构的终止条件,弄清不等号的方向及 是否含有等号.

[活学活用]

如图是求

的值的程序框图, 则判断框中应填入的

为 ________.

解析:i=1 时,得到 A= , 1 2+ 2 共需加 5 次, 故 i≤5. 答案:5

1

利用循环结构求满足条件的最值问题

[典例]

设计一个程序框图,求满足 1+2+3+…+n>2

016 的最小正整数 n.
[解] 程序框图如图所示:

求满足条件的最值问题的实质及注意事项 (1)实质:利用计算机的快速运算功能,对所有满足条件的 变量逐一测试,直到产生第一个不满足条件的值时结束循环. (2)注意事项: ①要明确数字的结构特征,决定循环的终止条件与数的结 构特征的关系及循环次数. ②要注意要统计的数出现的次数与循环次数的区别. ③要特别注意判断框中循环变量的取值限止,是 “>”“<”还是“≥”“≤”,它们的意义是不同的.

[活学活用]

某程序框图如图所示,则该程序的算法功能是________.

解 析: 由 程序 框图可 知,输 出的 i 是满足 1×3×5×7×…×n>50 000 的最小正整数 n. 答案:求满足 1×3×5×7×…×n>50 000 的 最小正整数 n

循环结构的实际应用

[典例]

(1)某城市缺水问题比较突出,

为了制定节水管理办法, 对全市居民某年的 月均用水量进行了抽样调查, 根据如图所示 的程序框图, 若其中 4 位居民的月均用水量 (单位:吨 )分别为 1,1.5,1.5,2,则输出的结 果 s 为 ________. (2)某商场第一年销售计算机 5 000 台,如果平均每年销 售量比上一年增加 10%,那么从第一年起,大约几年可使总 销售量达 40 000 台?画出解决此问题的程序框图.

[解析]

(1)第一步, s1= s1+ x1= 0+ 1= 1, s=1, i= 2;

2.5 第二步, s1= s1+ x2= 1+1.5= 2.5, s= , i= 3; 2 4 第三步, s1= s1+ x3= 2.5+ 1.5= 4, s= , i=4; 3 第四步, s1= s1+ x4= 4+2= 6, 1 3 3 s= × 6= , i= 5,不满足 i≤4,输出 s= . 4 2 2 3 答案: 2

(2)解:程序框图如图所示:

利用循环结构解决应用问题的方法

[活学活用]

某篮球队 6 名主力队员在最近三场比赛中投进的三分球个 数如表所示:

队员i 三分球个数

1 a1

2 a2

3 a3

4 a4

5 a5

6 a6

如图是统计该 6 名队员在最近三场比赛 中投进的三分球总数的程序框图,则图 中判断框中应填 ________,输出的 S= ________.

解析:由题意知该程序框图是统计该 6 名队员在最近三场 比赛中投进的三分球总数,故图中判断框应填 i≤6?,输 出的 S=a1+ a2+… +a6. 答案:6 a1+a2+…+a6


相关文档

高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构程序框图的画法课件新人教A版必修3
高中数学第一章算法初步1.1.2第3课时循环结构、程序框图的画法课件1新人教A版必修3
2017高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构课件新人教A版必修3
高中数学第一章算法初步1.1.2第3课时循环结构程序框图的画法课件新人教A版必修3
2017_2018学年高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构课件新人教A版必修3
2019学年高中数学必修三(人教A版 )课件:第一章 算法初步 1.1-1.1.2第3课时循环结构、程序框图的画法
高中数学第一章算法初步1.1.2第3课时循环结构、程序框图的画法课件3新人教A版必修3
高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构、程序框图的画法课件新人教A版必修3
2017学年高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构课件新人教A版必修3
版高中数学第一章算法初步1.1.2第3课时循环结构、程序框图的画法课件新人教a版必修3
电脑版