高考数学知识点专题精讲与知识点突破:不等式(含答案解析)


数学备课大师 www.eywedu.net【全免费】

2015 高三数学知识点汇总 三、不等式
一、不等式的基本性质为: ① ; ② ; ③ ; ④ ; ⑤ ; ⑥ ; ⑦ ; ⑧ ; 注意: 特值法是判断不等式命题是否成立的一种方法, 此法尤其适用于不成立的命题。 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 若 a, b ? 0 ,则 基本变形:① a?b ?

a?b ? ab (当且仅当 a ? b 时取等号) 2 a?b 2 ) ? ;( 2

;②

2ab a2 ? b2 ? ______? _______? a?b 2
a2 ? b2 a?b 2 ?( ) ; ④ ③ 若 a, b ? R , 则 a ? b ? 2ab , 2 2
2 2

_______ ? (

a?b 2 ) ? _________ 2

基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。 当 ab ? p (常数) ,当且仅当 当 a ? b ? S (常数) ,当且仅当 常用的方法为:拆、凑、平方; 如:①函数 y ? 4 x ? ②已知 0 ? x ? 时, 时, ; ;

9 1 ( x ? ) 的最小值 2 ? 4x 2

。 。 。

1 2 ,则 y ? x (1 ? 5x) 的最大值 5
2

③ y ? sin x cos x , x ? (0,

?

2

) 的最大值

④ 若 正 数 x, y 满 足 x ? 2 y ? 1 , 则 。 推广:①若 a, b, c ? 0 ,则

1 1 ? 的 最 小 值 x y

a?b?c 3 ? abc (当且仅当 a ? b ? c 时取等号) 3 a?b?c 3 ) ? 基本变形: a ? b ? c ? ;( ; 3

“备课大师”全科【9 门】 :免注册,不收费!http://www.eywedu.cn/

数学备课大师 www.eywedu.net【全免费】

② 若 a1 , a2 ,?, an ? 0 , 则

a1 ? a 2 ? ? ? a n n ? a1 a 2 ? a n ( 当 且 仅 当 n

a1 ? a2 ? ? ? an 时取等号)
三、绝对值不等式:

?

?

?


注 意 : | a ? b |?| a | ? | b |?

| a ? b |?| a | ? | b |? | a ? b |?| a | ? | b |? | a ? b |?| a | ? | b |? | a | ? | b |?| a ? b |? | a | ? | b |?| a ? b |? | a | ? | b |?| a ? b |? | a | ? | b |?| a ? b |?
四、常用的基本不等式:

; ; ; ; ; ; ;

(1)设 a, b ? R ,则 a ? 0, (a ? b) ? 0 (当且仅当
2 2

时 取等号) 时取等号)

(2) | a |? a (当且仅当 ( 3 ) 若 a ? 0, b ? 0 ,

时取等号) ; | a |? ?a (当且仅当 则 a ? b ? a b ? ab
3 3 2 2

;( 4 ) 若 a, b, c ? R , 则

a 2 ? b 2 ? c 2 ? ab ? bc ? ca
(5)若 a, b, c ? R ,则 3(ab ? bc ? ca) ? (a ? b ? c) ? 3(a ? b ? c )
2 2 2 2

(6)柯西不等式:设 a1 , a2 , b1 , b2 ? R ,则 (a1b1 ? a2b2 ) 2 ? (a1 ? a2 )(b1 ? b2 )
2 注意:可从向量的角度理解:设 a ? (a1 , a2 ),b ? (b1 , b2 ) ,则 ( a ? b ) ? a b 2 2

2

2

2

2

1 1 1 1 ? ; ? ? ; a b a b b b b b?m b b?m ? (8) a, b ? 0, m ? R ,若 ? 1 ,则 ? ;若 ? 1 ,则 ? ; a a a a?m a a?m
(7) a ? b, ab ? 0 ? 五、证明不等式常用方法: (1)比较法:①作差比较: A ? B ? 0 ? A ? B ;②作商比较:

A ? 1( B ? 0) ? A ? B B

“备课大师”全科【9 门】 :免注册,不收费!http://www.eywedu.cn/

数学备课大师 www.eywedu.net【全免费】

作差比较的步骤: ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断差的符号:结合变形 的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。 (3)分析法:执果索因。基本步骤:要证??只需证??,只需证?? (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项,如: a ? 1 ? a ; n(n ? 1) ? n
2

⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: log 3 ? lg 5 ? (

n(n ? 1) ?

n ? (n ? 1) 2
Ⅰ、 a ? b ? 0, m ? R , Ⅱ、 k ? 1 ? k ?
?

lg 3 ? lg 5 2 ) ? lg 15 ? lg 16 ? lg 4 ; 2

⑷利用常用结论:

b b?m ? ; a a?m

1 k ?1 ? k

?

1 2 k



Ⅲ、

1 1 1 1 1 1 1 1 ? ? ? ? ? ; 2 ? (程度大) 2 k (k ? 1) k ? 1 k k (k ? 1) k k ? 1 k k 1 1 1 1 1 1 ? 2 ? ? ( ? ) ; (程度小) 2 k k ? 1 (k ? 1)(k ? 1) 2 k ? 1 k ? 1 1 k ? 2 k ? k ?1 ? 2( k ? k ? 1) ; 1 k ? 2 k ? k ?1

Ⅳ、

Ⅴ、

(6)判别式法:与一元二次函数有关的或能通过等价变形转化成一元二次方程的根据其有 实数解或无解建立不等式关系。 如:证明

1 x2 ? x ?1 3 x2 ? x ?1 ? ? y ? ,可转化为 求函数 的值域。 2 2 x2 ?1 x2 ?1

(7)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的 换元有三角换元和代数换元。如:
2 2 2 已知 x ? y ? a ,可设 x ? a cos? , y ? a sin ? ; 2 2 已知 x ? y ? 1 ,可设 x ? r cos? , y ? r sin ? ( 0 ? r ? 1 );

“备课大师”全科【9 门】 :免注册,不收费!http://www.eywedu.cn/

数学备课大师 www.eywedu.net【全免费】

已知

x2 y2 ? ? 1 ,可设 x ? a cos? , y ? b sin ? ; a2 b2 x2 y2 ? ? 1 ,可设 x ? a sec? , y ? b tan? ; a2 b2

已知

(8)构造法:通过构造函数、方程、数列、复数(向量)或不等式来证明不等式; 六、不等式的解法: (1)如果两个不等式的解集相等,那么这两个等式就叫做同解不等式,解不等式主要是依 据不等式的性质和同解变形原理,求解原不等式的同解不等式。 (2)不等式的同解原理主要有: 1、不等式两边都加上(或减去)同一个数或同一个整式,所得不等式与原不等式同解。 2、 不等式两边都乘上(或除以)同一个正数或同一个大于零的整式, 所得不等式与原不 等式同解。 3、 不等式两边都乘以(或除以)同一个负数或同一个小于零的整式, 并把不等号改变方 向后,所得不等式与原不等式同解。 (3)一元一次不等式: Ⅰ、 ax ? b(a ? 0) :⑴若 a ? 0 ,则 Ⅱ、 ax ? b(a ? 0) :⑴若 a ? 0 ,则 ;⑵若 a ? 0 ,则 ;⑵若 a ? 0 ,则 ; ;

(4)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于 零; 注:要对 ? 进行讨论: Ⅰ、 ax ? bx ? c ? 0(a ? 0) :
2


2

; ⑵

; ⑶



Ⅱ、 ax ? bx ? c ? 0(a ? 0) : ⑴ ; ⑵ ; ⑶ ; | x |? a ? ; ; ; ⑵ ; ;

(5)绝对值不等式:若 a ? 0 ,则 | x |? a ? ⑴ | f ( x) |? g ( x) ?

| f ( x) |? g ( x) ?
⑶ | f ( x) |?| g ( x) |?

⑷含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。 注意:Ⅰ、几何意义: | x | : ; ;

| x?m|:

“备课大师”全科【9 门】 :免注册,不收费!http://www.eywedu.cn/

数学备课大师 www.eywedu.net【全免费】

Ⅱ、解有关绝对值的问题,考虑去绝对值,去绝对值的方法有: ⑴对绝对值内的部分按大于、 等 于、 小于零进行讨论去绝对值; ①若 a ? 0 则 | a |? ; ;③若 a ? 0 则 | a |? ;

②若 a ? 0 则 | a |?

⑵通过两边平方去绝对值;需要注意的是不等号两边为非负值。 (6)高次不等式:化成标准型 P( x) ? ( x ? x1 )(x ? x2 )(x ? x3 )?( x ? xn ) ? 0(? 0) ,利用 表解法和序轴表根法写出解集。 序轴表根法求解的步 骤:⑴将每个因式的根标在数轴上;⑵从右上方依次通过每个点画 出曲线,注意: ;⑶根据曲线显示的 P ( x) 值的符号变化写出

不等式的解集。 注意:每个因式中 x 前的系数都为正值。 (7)分式不等式的解法:通解变形为整式不等式; ⑴

f ( x) ?0? g ( x) f ( x) ?0? g ( x)

;⑵

f ( x) ?0? g ( x) f ( x) ?0? g ( x)





;⑷



(8)无理不等式的解法:通解变形为有理不等式; ⑴

f ( x) ? g ( x) ?
; ;

; ⑵

f ( x) ? g ( x) ?


f ( x) ? g ( x) ?

注意:⑴保证根式有意义;⑵取根号的方法是平方、换元,通过两边平方去根号,不 等式两边要为非负值。 (9)指数不等式: ⑴a ⑵a
f ( x)

? b(b ? 0, a ? 0且a ? 1) ? ? a g ( x) (a ? 0且a ? 1) ?

; ;

f ( x)

⑶ A? a

2 f ( x)

f ( x) 令t ? a 将不等式化为一元二次 ? B ? a f ( x) ? C ? 0(? 0) 利用换元法,

不等式来解。 注意:对底数的讨论。 (10)对数不等式: ⑴ loga f ( x) ? b ? ⑵ loga f ( x) ? loga g ( x) ? ; ;

“备课大师”全科【9 门】 :免注册,不收费!http://www.eywedu.cn/

数学备课大师 www.eywedu.net【全免费】

⑶ A ? [loga f ( x)]2 ? B ? loga f ( x) ? C ? 0(? 0) 利用换元法,令 t ? loga f ( x) 将不 等式化为一元二次不等式来解。 注意:⑴对底数的讨论;⑵真数大于零; ⑶解指数、 对数不等式的一般步骤: 统一底数 ?同解变形 ?分类讨论 (底数) ; (11)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这 个不等式组的解集,在求 交集中,通常把每个不等式的解集画在 同一条数轴上,取它们的公共部分。 (12)解含有参数的不等式:一般是对含参数的不等式进行恰当的分类和讨论: ⑴对二次项系数含有参数的一元二次不等式,要注意二次项系数为零转化为一元一 次不等式的问题。 ⑵对含参数的一元二次不等式,还要分 ? ? 0 、 ? ? 0 、 ? ? 0 讨论。 ⑶对一元二次不等式和分式不等式转化为整式不等式后有根, 且根为 x1 , x 2 (或更多) 但含参数,要分 x1 ? x 2 、 x1 ? x 2 、 x1 ? x 2 讨论。 ⑷对指数、对数不等式要注意对底数分 a ? 1 、 0 ? a ? 1 进行讨论。 如: (1)

a( x ? 1) a?x ? 1(a ? 1) ; ?0 (2) 2 x?2 a ?x?2

“备课大师”全科【9 门】 :免注册,不收费!http://www.eywedu.cn/


相关文档

高考数学知识点专题精讲与知识点突破:导数(含答案解析)
高考数学知识点专题精讲与知识点突破:排列、组合、二项式、概率(含答案解析)
高考数学知识点专题精讲与知识点突破:函数(含答案解析)
高考数学(理)一轮知识点专题讲座:不等式的性质及解法(含答案)
2019年高考数学考点突破专题 不等式基本不等式Word版含解析
2018年高考数学三轮冲刺之专题突破详解:专题32 解不等式(含解析)
2018年高考数学三轮冲刺之专题突破详解:专题36 不等式选讲(含解析)
高考数学知识点专题精讲与知识点突破:三角函数(含答案解析)
高考数学知识点专题精讲与知识点突破:圆锥曲线部分(含答案解析)
2011年高考数学难点、重点突破精讲精练专题三-数列与函数、方程、不等式的综合(学生版)
电脑版